

University of International Business and Economics International Summer School

CHE 110: Introduction to Chemistry (with Lab)

Term: July 8 – August 2, 2019

Instructor: Nan Chen

Home Institution: Curry College Email: nchen0813@curry.edu

Class Hours: Monday through Friday, 120 minutes each day

Office Hours: TBD

Office flours. TDD

Discussion Session: 2 hours each week

Total Contact Hours: 64 contact hours (45 minutes each)

Credit: 4 units

If you wish to speak to me outside the allotted office hours, please come by or make an appointment.

Course Description:

CHEM 110 is the first semester of a two-semester course for science majors. This course is designed to introduce students to the fundamental principles of chemistry. We will begin with the atomic and molecular nature of matter and its changes, unit conversions, the periodic table and nomenclature. We will discuss the mole concept, stoichiometry, oxidation-reduction and precipitation reactions, and solution chemistry. We will finish the semester discussing quantum chemistry and examine the atomic theory, modes of bonding, periodicity, Lewis structures, VSEPR theory, intermolecular forces and the gas laws.

Course Goals:

- i) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe their transformations.
- ii) To develop quantitative and critical thinking skills necessary to solve chemical problems using the concepts of balanced chemical reactions, stoichiometry, and solution chemistry.
- iii) To gain an understanding of the periodic table as an organizing concept of chemical properties.
- iv) To use the principles of the VSEPR to gain an understanding for the relationship between molecular structures, geometry and use these to discuss bond polarity, solubility, types of intermolecular forces.

Course Material:

- Chemistry: A Molecular Approach, 4th ed. by Nivaldo J. Tro, ISBN: 978-0134112831
- Non-programmable Scientific Calculator
- Mastering Chemistry: <u>www.masteringchemistry.com</u>

Electronic Devices:

All electronic communication devices must be turned off during class time. You will not be allowed to use electronic devices during exams or quizzes (no cell phones calculators).

Online Homework Assignments:

Mandatory graded online assignments will be assigned using the mastering chemistry online program associated with your textbook at www.masteringchemistry.com. These assignments and tutorials will help you to assess your understanding of the material, provide immediate feedback, identify areas of difficulty and allow you to work at your own pace to achieve mastery the material. In order to access this online-program you will need:

- i) A valid e-mail address
- ii) A student access code—this comes with your textbook or can be purchased online.
- iii) The course ID: TBD

Many helpful features are also built into the Mastering Chemistry program:

- Multiple attempts for each assigned problem with only a small penalty for incorrect answers.
- Helpful "HINTS" for each problem
- Problems are graded instantly giving you immediate feedback
- Study area

Each online assignment, homework or quiz, have specified due dates and will be graded automatically. It is your responsibility to complete the assignments by the set deadlines. *Late online assignments will not be accepted.* Online assignments count for 10% of each student's final numerical grade.

Laboratory:

Laboratory is an integral part of the course. Attendance is mandatory. You must have a passing grade in lab to pass course. For more information on the Laboratory, please visit the lab syllabus.

Attendance Policy for Classes, Quizzes & Exams:

It is highly recommended that you make every effort to attend all classes, as the quizzes and the three one-hour exams are based solely on the lecture. No additional "credit" is given in this course.

Make-up quizzes or exams will only be permitted due **to illness or family emergency**. If you are unable to attend class on a quiz or exam day because of illness or emergency, you are expected to contact me **before class** by phone, WeChat or e-mail. Failure to notify me in one of these ways will result in you not receiving consideration for a make-up quiz or examination. A Doctor's note is required in case of an illness.

Academic Honesty:

The relationship between students and faculty is based upon trust and the continued maintenance of this trust is necessary for education to be successful. Students need to trust faculty to make appropriate judgments about the content and structure of the course. Faculty members need to trust that the work turned in by students represents their own effort. Violation of this trust undermines the educational process. As a result, there is no tolerance for breach of academic integrity such as cheating, plagiarizing, or inappropriate sharing of laboratories or quizzes.

Anyone caught cheating or plagiarizing will receive an F in the course.

Cheating can include sharing answers, as well as stealing answers. Plagiarism means copying words from someone's work, even if you "change the sentence a bit." If you share your laboratory report you are as guilty as the person copying it. If you do use material from an appropriate source, make sure you reference it properly in your reports. If you have any questions about the proper way to reference sources, please ask.

Important Dates:

Last day to add or drop: Tuesday July 3rd

Last day to withdrawal from course: Thursday July 26th

Final Exam: Friday Aug. 2nd

Exams:

Three one-hour exams will be given during the semester. A tentative exam schedule is provided below. *Make-up exams will only be permitted due to illness or family emergency.*

Exam Schedule: Hour Exam I Friday, July 12th

Hour Exam II Friday, July 19th

Hour Exam III Friday, July 26th

Final Exam:

The final exam will be comprehensive and accounts for 20% of your final grade.

Final Exam: Friday, August 2nd @ 3:20 PM

Grade Calculations:

Regular class attendance and completion of chapter readings are necessary to succeed in this course. Your final course grade will be calculated as follows:

Lecture Attendance and Participation	5%
Online Homework Assignments	10%
Quizzes (8)	12%
Exams (3)	33%
Cumulative Final Exam	20%
Laboratory	20%

Grading Scale:

Assignments and examinations will be graded according to the following grade scale:

Α	90-100	C+	72-74
A-	85-89	С	68-71
B+	82-84	C-	64-67
В	78-81	D	60-63
B-	75-77	F	below 60

Tentative Schedule

Date	Date Topic		Important Events	
July 8	Class Ov	verview		
	Chapter	One: Matter, Measurement, and Problem Solving		
	i)	Scientific Method		
	ii)	Classification of Matter – Elements, Mixtures,		
		Compounds		
	iii)	Physical and Chemical Changes and Properties		
	iv)	Units of Measurements – SI Units, Significant Figures,		
		dimensional analysis, Density		
July 9	Chapter	Two: Atoms and Elements	Quiz #1	
	i)	Basic Principles of Atomic Theory and Structure.	Last day to add	
	ii)	Subatomic Particles – Protons, Neutrons, Electrons;	or drop	
		Isotopes and Ions		
	iii)	Period Table – Groups, Periods, Representative		
		Elements, Transition Metals		
	iv)	Atomic Mass – Calculating the average mass of an		
		element's atoms		
	v)	The Mole Concept – Relationship between the mass of		
		a substance and the number of moles, calculating the		
		Molar Mass		
July 10	-	3: Molecules, Compounds, and Chemical Equations		
	i)	Chemical Bonds – Ionic vs Covalent		
	ii)	Ionic Compounds – Nomenclature, Polyatomic Ions		
	iii)	Molecular Compounds – Nomenclature		
	iv)	Formula Mass, Mole Concept of Compounds, Mass		
		Percent, Empirical Formula		
	v)	Writing and Balancing Equations		
July 11	Chapter	3: Cont.	Quiz #2	
July 12	Chapter	4: Stoichiometry (Part One)	Exam 1 on	
	i)	Mole Concept and stoichiometry calculations	Chapter 1-3	
	ii)	Limiting Reagents, Theoretical Yield, Percent Yield		
July 15	Chapter	4: Part One Cont.		
July 16	Chapter	4: Aqueous Reactions (Part Two)	Quiz #3	
	i)	Solution Concentration – Molarity, Molality, Dilution,		
		m/v%, v/v%		
	ii)	Properties of Solutions – Electrolytes and		
		Nonelectrolytes		
	iii)	Solubility of Ionic Compounds and Precipitation		
		Reactions – Complete Ionic and Net Ionic Equations		
	iv)	Acid-Base and Gas-Evolution Reactions		

	v) Oxidatio	on-Reduction Reactions	
	,	tion Reactions	
July 17	Chapter 4: Part Tw		
July 17	Chapter 4. Fart Tw	o cont.	
July 18	Chapter 5: Gases		Quiz #4
	i) Boyle's	Law, Charles's Law and Avogadro's Law	
	ii) Ideal Ga	s Law PV=nRT	
	iii) Kinetic I	Molecular Theory	
	iv) Real Ga	ses	
July 19			Exam 2 on
			Chapter 4 and 5
July 22	Chapter 7: The Qua	antum-Mechanical Model of the Atom	
	i) Quantu	m Theory – Photons, Photoelectric Effect, Bohr	
	Model,	de Broglie Relations, Quantum Numbers	
July 23	Chapter 8: Periodic	Properties of the Elements	Quiz #5
	i) Electror	Configuration – Pauli Exclusion Principle,	
	Aufbau	Principle, Hund's Rule	
	ii) Orbital	Diagram Notation of Atoms and Ions	
	iii) Periodio	Trends – Size of Atoms, Ionic Radii, Ionization	
	Energy,	Electron Affinity	
July 24	Chapter 8: Cont.		
July 25	Chapter 9: Chemic	al Bonding I	Quiz #6
,	-	ovalent and Metallic Bonds	Last day to
	ii) Electror	egativity and Bond Polarity	withdrawal
	iii) Lewis El	ectron Dot Symbols, Octet Rule, Lewis	
	Structur	es of Ionic and Covalent Molecules, Formal	
	Charges	, Resonance	
	iv) Bond O	der, Bond Length and Bond Energy	
July 26	Chapter 9: Cont.		Exam 3 on
	0 . 40.0	15 11 11	Chapter 7 – 9
July 29	Chapter 10: Chemi	_	
	•	heory – Molecular Geometry	
		Bond Theory – Hybridization	0
July 30	Chapter 10, Cont.		Quiz #7
July 31	Chapter 11: Interm	olecular Forces	
	i) Dispersi	on, Dipole-Dipole, Ion-Dipole Forces, and	
	Hydroge	en Bonding	
	ii) States o	f Matter and Physical Properties	
Aug. 1	Review		Quiz #8
Aug. 2	Final Exam		

Laboratory Syllabus

Course Goals:

Upon successful completion of this course, students will be able to:

- Demonstrate the ability to work safely and effectively in the laboratory.
- Competently perform a broad variety of analytical and synthetic procedures and critically evaluate the results.
- Perform basic laboratory skills and understand common laboratory practices, procedures, and equipment, including safety issues.
- Explain, analyze and interpret the data obtained from each experiment.
- Demonstrate adequate skills in technical writing.

Course Material:

- Approved Eye Protection. Safety regulations require that splash-proof, chemical goggles be worn by everyone present at any time that any experimentation is being conducted or at any time that chemicals or equipment are being moved by anyone else in the laboratory. Failure to wear goggles will result in expulsion from the laboratory for the experiment involved. Don't forget them! Goggles must be splash-proof (indirect vents). Appropriate goggles are available at the bookstore.
- <u>Scientific Calculator</u>. Please bring your calculator to each lab. You may not use your cell phone as a calculator.

Policy on Safety and Breakage:

Before working in the laboratory, every student must read and sign a Safety Agreement and take the safety quiz found in the beginning of your lab manual. Some highlights and supplements:

- 1) Food and drink (including bottled water) are not permitted in the lab
- 2) You must wear eye protection and your long white lab coat at all times
- 3) You must wear sturdy clothing that completely covers your feet, ankles and legs below your lab coat. Sturdy long pants that cover your ankle and sturdy shoes or boots that encase your foot are strongly advised. Open-toe, open-top, and open-heel shoes, sandals, slippers, pajamas, shorts, and short skirts are not permitted
- 4) Your clothing and hair must not dangle into your experiments: tuck it in, tie it back, or remove it
- 5) The use of cell phones is not permitted in the lab, even as a calculator
- 6) You may not run an unauthorized experiment or remove chemicals or equipment from the lab

It is imperative for your safety that you and everyone around you strictly adhere to the Safety Rules. Failure to wear safe attire, or comply with safety regulations, will result in dismissal from the lab for that day and a zero lab grade for that experiment. You will utilize equipment furnished by the College. It is your responsibility to properly maintain the equipment while it is in your care. If equipment that has been entrusted to you is not returned in satisfactory condition, you will be held responsible for it.

Attendance Policy:

Students are expected to attend and perform ALL scheduled labs. With proper documentation and permission of instructor, students, including student athletes, will be allowed to make-up a missed experiment. All students must contact their laboratory instructor prior to their scheduled lab to arrange permission to make-up the experiment.

Preparation and Pre-lab Questions:

You are expected to read the laboratory procedure before your laboratory session. This preparation will be necessary for you to complete your experiments within the allotted time. You are expected to complete the Pre-lab Questions (found at the beginning of each report form) before your lab period – these will be collected at the beginning of lab. Failure to answer the Pre-Lab Questions in advance will result in zero credit for those questions on your report.

Reports:

Unless otherwise noted, lab reports are due at the end of the lab period on the day that the experiment has been conducted. Your instructor must personally accept your report and give you permission to leave before you exit the lab. <u>Late reports will not be accepted</u>.

The Report sheets (including the Pre-Lab Questions) are worth 90% of your grade for each lab period. The Report Sheet must reflect information obtained by you while in the laboratory and recorded in your lab manual. Although you may be asked to work in groups at times, each member of the group must turn in their own complete report sheet. If you wish, you may discuss the lab with others as you complete the report; however, your answers to the report questions must be written in your own words. Identical lab reports, even from lab partners, are considered a violation of the Academic Honesty Policy, and each party will receive a zero for that report. Neatness and completeness may be considered when grades are assigned.

Grade Calculations:

The lab portion of the course is worth 20% towards your final course grade. Each experiment will be graded out of 100 points according to the following grading scheme:

Prelab Questions	15%
Lab Report Sheet	75%
Lab Safety, Technique and Cleanup	10%

Tentative Lab Schedule:

Date	Торіс			
	Laboratory Safety and check-in			
	Experiment #1 Measurements and Density			
	Experiment #2 Isolating the Components of a Three-Component Mixture			
	Experiment #3 Determining the Water Content of an Ionic Hydrate			
	Experiment #4 Studying Chemical Reactions and Writing Chemical Equations			
	Experiment #5 Acid-Base Titration			
	Experiment #6 Gas Laws			
	Experiment #7 Molecular Models (Dry Lab)			
	Experiment #8 Spectrophotometric Analysis of Permanganate Solutions			