

University of International Business and Economics International Summer School

CHE 100 Introduction to Chemistry

Term: June 15 - July 16, 2020 Instructor: Guirong Wang

Home Institution: Beijing University of Chemical Technology Email: wanggr@mail.buct.edu.cn /bettymaggie@126.com
Class Hours: Monday through Thursday, 120 minutes each day

Office Hours: TBD

Discussion Session: 2 hours each week

Total Contact Hours: 64 contact hours (45 minutes each)

Location: WEB Credit: 4 units

Course Description:

This course is designed to introduce students to the fundamental principles of chemistry. We will begin with the atomic and molecular nature of matter and its changes, unit conversions, the periodic table and nomenclature. We will discuss the mole concept, stoichiometry, oxidation-reduction and precipitation reactions, and solution chemistry. We will finish the semester discussing quantum chemistry and examine the atomic theory, modes of bonding, periodicity, Lewis structures, VSEPR theory, intermolecular forces and the gas laws.

Course Goals:

- i) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe their transformations.
- To develop quantitative and critical thinking skills necessary to solve chemical problems using the concepts of balanced chemical reactions, stoichiometry, and solution chemistry.
- iii) To gain an understanding of the periodic table as an organizing concept of chemical properties.
- iv) To use the principles of the VSEPR to gain an understanding for the relationship between molecular structures, geometry and use these to discuss bond polarity, solubility, types of intermolecular forces.

Course Material:

- Chemistry: A Molecular Approach, 4th ed. by Nivaldo J. Tro, ISBN: 97 8-0134112831
- Non-programmable Scientific Calculator

Homework Assignments:

Mandatory graded Assignments will be assigned associated with your textbook at. These assignments will help you to assess your understanding of the material and identify areas of difficulty and allow you to work at your own pace to achieve mastery the material.

Either assignment or quiz, have specified due dates and will be graded. It is your responsibility to complete the assignments by the set deadlines. Assignments count for 30% of each student's final numerical grade.

Academic Honesty:

The relationship between students and faculty is based upon trust and the continued maintenance of this trust is necessary for education to be successful. Students need to trust faculty to make appropriate judgments about the content and structure of the course. Faculty members need to trust that the work turned in by students represents their own effort. Violation of this trust undermines the educational process. As a result, there is no tolerance for breach of academic integrity such as cheating, plagiarizing, or inappropriate sharing of laboratories or quizzes.

Anyone caught cheating or plagiarizing will receive an F in the course.

Cheating can include sharing answers, as well as stealing answers. Plagiarism means copying words from someone's work, even if you "change the sentence a bit." If you share your laboratory report you are as guilty as the person copying it. If you do use material from an appropriate source, make sure you reference it properly in your reports. If you have any questions about the proper way to reference sources, please ask.

Grade Calculations:

Regular class attendance and completion of chapter readings are necessary to succeed in this course. Your final course grade will be calculated as follows:

Discussion Attendance and Participation	10%
Assignments	30%
Quizzes (4)	30%
Cumulative Final Exam	30%

Grading Scale:

Assignments and examinations will be graded according to the following grade scale:

Α	90-100	C+	72-74
A-	85-89	C 68-71	
B+	82-84	C-	64-67
В	78-81	D 60-63	
B-	75-77	F below 60	

Tentative Schedule

Week 1	Topics	Textbook readings
Mon	Overview	1-5
	Scientific Method	
	Classification of Matter	
Tue	Overview	9-13
	Physical and Chemical Changes and Properties	
	Units of Measurements	
Wed	Atoms and Elements	53-55
	Basic Principles of Atomic Theory and Structure.	
	Subatomic Particles	
Thurs	Atoms and Elements	65-69
	Atomic Mass	
	The Mole Concept	
Week 2		
Mon	Molecules, Compounds, and Chemical Equations	87-90
IVIOII	Chemical Bonds	07 30
	Ionic Compounds	
Tue	Molecules, Compounds, and Chemical Equations	101,107
ruc	Molecular Compounds – Nomenclature	101,107
	Formula Mass, Mole Concept of Compounds	
Wed	Molecules, Compounds, and Chemical Equations	107,119
vvcu	Writing and Balancing Equations	107,110
Thurs	Molecules, Compounds, and Chemical Equations	141
	Mole Concept and stoichiometry calculations	
Week 3		
Mon	Chemical Quantities and Aqueous Reactions	
ivion	Properties of Solutions	
Tue	Chemical Quantities and Aqueous Reactions	158-162
	Solubility of Ionic Compounds and Precipitation Reactions	130-102
Wed	Chemical Quantities and Aqueous Reactions	167-175

Acid-Base and Gas-Evolution Reactions Oxidation-Reduction Reactions Combustion Reactions Thurs Gases Ideal Gas Law Kinetic Molecular Theory Week 4 Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding I			I
Combustion Reactions Gases Ideal Gas Law Kinetic Molecular Theory Week 4 Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding I VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		 Acid-Base and Gas-Evolution Reactions 	
Thurs Gases Ideal Gas Law Kinetic Molecular Theory Week 4 Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding II Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		Oxidation-Reduction Reactions	
Thurs Ideal Gas Law Kinetic Molecular Theory Week 4 Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		Combustion Reactions	
• Ideal Gas Law • Kinetic Molecular Theory Week 4 Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Thurs	Gases	208, 224
Week 4 297-308 Tue Periodic Properties of the Elements	111013	Ideal Gas Law	200, 22 :
Mon Quantum Theory 297-308 Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		Kinetic Molecular Theory	
Tue Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Week 4		
Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Mon	Quantum Theory	297-308
Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Tuo	Periodic Properties of the Elements	339-347
Wed Periodic Properties of the Elements Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Tuc	Electron Configuration – Pauli Exclusion Principle, Aufbau	333 347
Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		Principle, Hund's Rule	
Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Wed	Periodic Properties of the Elements	352-356
Electron Affinity Chemical Bonding I lonic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	vvca	Periodic Trends – Size of Atoms, Jonic Radii, Jonization Energy	332 330
Thurs Chemical Bonding I Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		, , , , , , , , , , , , , , , , , , , ,	
Thurs Ionic, Covalent and Metallic Bonds Week 5 Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		•	
Week 5 Chemical Bonding I Electronegativity and Bond Polarity 396-399 Tue Chemical Bonding II • VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization 428-437 Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding 486-489	Thurs		384-394
Mon Chemical Bonding I Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding			
Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Week 5		
Electronegativity and Bond Polarity Tue Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Mon	Chemical Bonding I	396-399
• VSEPR Theory – Molecular Geometry • Valence Bond Theory – Hybridization Wed Intermolecular Forces • Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	101011	Electronegativity and Bond Polarity	330 333
 VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding 	Tue	Chemical Bonding II	428-437
Wed Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding 486-489	iue	 VSEPR Theory – Molecular Geometry 	720 737
Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding		 Valence Bond Theory – Hybridization 	
Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding	Wed	Intermolecular Forces	486-489
		Dispersion, Dipole-Dipole, Ion-Dipole Forces, and	
States of Matter and Physical Properties		Hydrogen Bonding	
		States of Matter and Physical Properties	
Thurs FINAL EXAM	Thurs	FINAL EXAM	