

University of International Business and Economics International Summer School

CHE 100 Introduction to Chemistry

Term: May 24 – June 24, 2021 Instructor: Guirong Wang

Home Institution: Beijing University of Chemical Technology Email: wanggr@mail.buct.edu.cn/bettymaggie@126.com

Class Hours: Monday through Thursday, 120 minutes each day (2,400 minutes in total)

Office Hours: TBD

Discussion Session: 2 hours each week

Total Contact Hours: 64 contact hours (45 minutes each)

Credit: 4 units

Course Description:

This course is designed to introduce students to the fundamental principles of chemistry. We will begin with the atomic and molecular nature of matter and its changes, unit conversions, the periodic table and nomenclature. We will discuss the mole concept, stoichiometry, oxidation-reduction and precipitation reactions, and solution chemistry. We will finish the semester discussing quantum chemistry and examine the atomic theory, modes of bonding, periodicity, Lewis structures, VSEPR theory, intermolecular forces and the gas laws.

Course Goals:

- i) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe their transformations.
- ii) To develop quantitative and critical thinking skills necessary to solve chemical problems using the concepts of balanced chemical reactions, stoichiometry, and solution chemistry.
- iii) To gain an understanding of the periodic table as an organizing concept of chemical properties.
- iv) To use the principles of the VSEPR to gain an understanding for the relationship between molecular structures, geometry and use these to discuss bond polarity, solubility, types of intermolecular forces.

Course Material:

- Chemistry: A Molecular Approach, 4th ed. by Nivaldo J. Tro, ISBN: 97 8-0134112831
- Non-programmable Scientific Calculator

Homework Assignments:

Mandatory graded Assignments will be assigned associated with your textbook at. These assignments will help you to assess your understanding of the material and identify areas of difficulty and allow you to work at your own pace to achieve mastery the material.

Either assignment or quiz, have specified due dates and will be graded. It is your responsibility to complete the assignments by the set deadlines. Assignments count for 30% of each student's final numerical grade.

Academic Honesty:

The relationship between students and faculty is based upon trust and the continued maintenance of this trust is necessary for education to be successful. Students need to trust faculty to make appropriate judgments about the content and structure of the course. Faculty members need to trust that the work turned in by students represents their own effort. Violation of this trust undermines the educational process. As a result, there is no tolerance for breach of academic integrity such as cheating, plagiarizing, or inappropriate sharing of laboratories or quizzes.

Anyone caught cheating or plagiarizing will receive an F in the course.

Cheating can include sharing answers, as well as stealing answers. Plagiarism means copying words from someone's work, even if you "change the sentence a bit." If you share your laboratory report you are as guilty as the person copying it. If you do use material from an appropriate source, make sure you reference it properly in your reports. If you have any questions about the proper way to reference sources, please ask.

Grade Calculations:

Regular class attendance and completion of chapter readings are necessary to succeed in this course. Your final course grade will be calculated as follows:

Discussion Attendance and Participation	10%
Assignments	30%
Quizzes (4)	30%
Cumulative Final Exam	30%

Grading Scale:

Assignments and examinations will be graded according to the following grade scale:

Α	90-100	C+	72-74
A-	85-89	С	68-71
B+	82-84	C-	64-67
В	78-81	D	60-63
B-	75-77	F	below 60

Tentative Schedule

Topics	Textbook readings
Overview	1-5
Scientific Method	
Classification of Matter	
Overview	9-13
 Physical and Chemical Changes and Properties 	
Units of Measurements	
Atoms and Elements	53-55
Basic Principles of Atomic Theory and Structure.	33 33
Subatomic Particles	
Atoms and Elements	65-69
Atomic Mass	05 05
The Mole Concept	
Molecules, Compounds, and Chemical Equations	87-90
Chemical Bonds	0, 30
Ionic Compounds	
Molecules, Compounds, and Chemical Equations	101-107
 Molecular Compounds – Nomenclature 	101 107
 Formula Mass, Mole Concept of Compounds 	
Molecules, Compounds, and Chemical Equations	107-119
Writing and Balancing Equations	107 113
Molecules, Compounds, and Chemical Equations	141
Mole Concept and stoichiometry calculations	
Chemical Quantities and Aqueous Reactions	
Properties of Solutions	
Chemical Quantities and Aqueous Reactions	158-162
Solubility of Ionic Compounds and Precipitation Reactions	
Chemical Quantities and Aqueous Reactions	167-175
Acid-Base and Gas-Evolution Reactions	
	Overview

	Oxidation-Reduction Reactions	
	Combustion Reactions	
Thurs	Gases • Ideal Gas Law	208-224
	Kinetic Molecular Theory	
Week 4		
Mon	Quantum Theory	297-308
Tue	Periodic Properties of the Elements Electron Configuration – Pauli Exclusion Principle, Aufbau Principle, Hund's Rule	339-347
Wed	Periodic Properties of the Elements	352-356
	Periodic Trends – Size of Atoms, Ionic Radii, Ionization Energy, Electron Affinity	
Thurs	Chemical Bonding I Ionic, Covalent and Metallic Bonds	384-394
Week 5		
Mon	Chemical Bonding I Electronegativity and Bond Polarity	396-399
Tue	 Chemical Bonding II VSEPR Theory – Molecular Geometry Valence Bond Theory – Hybridization 	428-437
Wed	 Intermolecular Forces Dispersion, Dipole-Dipole, Ion-Dipole Forces, and Hydrogen Bonding States of Matter and Physical Properties 	486-489
Thurs	FINAL EXAM	

Online Possibility:

Due to the on-going pandemic, there is a possibility that in-person courses are changed to online ones. UIBE ISS will notify the students once the decision has been made.

If the in-person courses are to be changed to online courses, we will make a few adjustments:

1. **Lecture:** Each lecture will be uploaded on UIBE's online learning platform on a daily basis. Students are required to watch them according to the course schedule.

- 2. **Discussion:** There will be an open session on ZOOM every Tuesday. The attendance of the discussion is important as it is part of your final score.
- 3. **Office hours:** I will release the office hours once the course starts. You are very welcome to send me emails to book my time. We will have video or audio calls through ZOOM. Please be noted to book them at least 3 days in advance.